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▪ Why develop lactation PBPK models?

▪ Workflow for developing lactation (and pediatrics) PBPK models

▪ PBPK-based simulations of concentrations in human milk for 10 model 

medicines

▪ In vitro permeability model across blood milk barrier 

▪ Conclusions and future perspectives
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Outline



▪ WHO recommends exclusive breastfeeding during first 6 months of life

▪ 83% of medicine labels contain no information about use during lactation 
(EMA, 2011)

▪ “No woman should have to make an uninformed decision about 
breastfeeding her baby” – IMI ConcePTION
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Risk related to medication and breastfeeding

References: EMA, (2011); WHO, (2024).
Abbreviations: World Health Organization (WHO); European Medicines Agency (EMA); Innovative Medicines Initiative (IMI)



3

Non-clinical platform for predicting milk and infant exposure 

to maternal medication

Reference: https://doi.org/10.1016/j.biopha.2020.111038
The specific aims are: (i) to compile the state-of-the art of non-clinical tools for human milk medicine transfer; (ii) to develop in vitro models, enabling determination of medicine transport rates at the
human blood/milk barrier; (iii) to develop PBPK models for the bottom-up prediction of in vivo human milk medicine exposure; (iv) to generate in vivo human data for the exposure of medicines in
human milk; (v) to initiate regulatory acceptance for the developed non-clinical platform

https://doi.org/10.1016/j.biopha.2020.111038
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Non-clinical platform for predicting milk and infant exposure 

to maternal medication

Reference: https://doi.org/10.1016/j.biopha.2020.111038
The specific aims are: (i) to compile the state-of-the art of non-clinical tools for human milk medicine transfer; (ii) to develop in vitro models, enabling determination of medicine transport rates at the
human blood/milk barrier; (iii) to develop PBPK models for the bottom-up prediction of in vivo human milk medicine exposure; (iv) to generate in vivo human data for the exposure of medicines in
human milk; (v) to initiate regulatory acceptance for the developed non-clinical platform

Development of a framework for physiologically-based

pharmacokinetic (PBPK) predictions of transfer of medicines into

human milk, and subsequent infant exposure to maternal

medicines via breastfeeding.

https://doi.org/10.1016/j.biopha.2020.111038
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Selected model compounds

Amoxicillin

(Renal)

Caffeine

(Hepatic CYP1A2)

Cetirizine

(Renal)

Levetiracetam 

(Renal/Esterases)

Valproic Acid

(Hepatic UGTs) 
Nevirapine

(Hepatic CYP3A4) Sertraline

(Hepatic CYPs)

Zidovudine

(Hepatic UGT2B7)

Tenofovir

(Renal)

Metformin

(Renal)

Red: main elimination pathway
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Across all drugs PBPK model performance

for adult healthy volunteers (males and

females) was within 2-fold margin for AUC

and Cmax.

Performance of the non-lactating adult PBPK models 

in PK-SIM 

References: Nauwelaerts et al. (2023)

This qualified as base model for 

lactation PBPK model

Individual predicted/observed ratios are shown for model

building (red circles) and model verification (blue circles) data. 

Black lines represent the 0.5- and two-fold prediction error ratio



Workflow for lactation PBPK model development

𝑑𝑁𝑚𝑖𝑙𝑘

𝑑𝑡
= 𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝐶𝐿𝑠𝑒𝑐

𝑑𝑁𝑝𝑙𝑎𝑠𝑚𝑎

𝑑𝑡
= 𝐶𝑚𝑖𝑙𝑘 ∗ 𝑓𝑢𝑚𝑖𝑙𝑘,𝑡𝑜𝑡𝑎𝑙 ∗ 𝐶𝐿𝑟𝑒

Log 𝐶𝐿𝑠𝑒𝑐 = −3.912 − 0.015 𝑃𝑆𝐴 + 3.367Log 𝑀𝑊 − 0.164Log
𝑃

𝐷7.4
Log 𝐶𝐿𝑟𝑒 = 2.793 + 0.179 𝐿𝑜𝑔𝑃 − 0.132 𝐻𝐵𝐷

Τ𝑀 𝑃 𝑟𝑎𝑡𝑖o =
𝐴𝑈𝐶ℎ𝑢𝑚𝑎𝑛 𝑚𝑖𝑙𝑘

𝐴𝑈𝐶𝑝𝑙𝑎𝑠𝑚𝑎
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References: Nauwelaerts et al. (2023)
Abbreviations: Physiologically-based pharmacokinetic modelling (PBPK modelling); Milk-to-plasma ratio (M/P ratio); area-under-the-curve (AUC); plasma concentration (Cplasma); fraction unbound in
plasma (fuplasma); secretion clearance (CLsec); human milk concentration (Cmilk); total unbound fraction in milk (fumilk, total); reuptake clearance (Clre); polar surface area (PSA); molecular weight (MW);
octanol water partition coefficient (LogP); octanol:buffer (pH 7.4) distribution coefficient (LogD7.4); hydrogen bound donors (HBD)
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Lactation PBPK model predictions were comparable with literature for 

80% of the selected (model) compounds

References: Nauwelaerts et al. (2023)
For amoxicillin, the M/P ratio was calculated using the peak concentration in plasma and the highest measured concentration in human milk. Alternatively, non-compartmental analysis was applied to
estimate the area-under-the-curve (AUC) based M/P ratio, assuming that the elimination slope in human milk is identical to plasma. For cetirizine, the M/P ratio was calculated using the observed
steady-state AUC in human milk (0.50 mg*h/L), and the observed plasma AUC in non-lactating adults receiving the same dosing regimen (2.50 mg*h/L). Some studies report human milk
concentrations below the limit of quantitation for sertraline and valproic acid.



9

Infant exposure

Daily infant dosage (DID,𝑚𝑔/𝑘𝑔/𝑑𝑎𝑦)
= 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 human milk(𝑚𝑔/𝑚𝐿) ∗ 𝑉𝑜𝑙𝑢𝑚𝑒human milk Τ(𝑚𝐿 Τ𝑘𝑔 𝑑𝑎𝑦)

Relative infant dose RID,% =
𝐷𝑎𝑖𝑙𝑦 𝑖𝑛𝑓𝑎𝑛𝑡 𝑑𝑜𝑠𝑎𝑔𝑒

𝐷𝑎𝑖𝑙𝑦 𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑜𝑠𝑎𝑔𝑒
∗ 100 %

Relative therapeutic infant dose 𝑅𝐼𝐷𝑡ℎ𝑒𝑟𝑎𝑝𝑒𝑢𝑡𝑖𝑐 , % =
𝐷𝑎𝑖𝑙𝑦 𝑖𝑛𝑓𝑎𝑛𝑡 𝑑𝑜𝑠𝑎𝑔𝑒

𝐷𝑎𝑖𝑙𝑦 therapeutic infant 𝑑𝑜𝑠𝑎𝑔𝑒
∗ 100 %

References: Nauwelaerts et al. (2023)
Abbreviations: Physiologically-based pharmacokinetic modelling (PBPK modelling); Daily infant dosage (DID); relative infant dose (RID); relative infant exposure (RIE), relative therapeutic infant dose
(RIDtherapeutic)

Relative infant exposure (RIE,%) =
𝐴𝑈𝐶𝑝𝑙𝑎𝑠𝑚𝑎,𝑖𝑛𝑓𝑎𝑛𝑡

𝐴𝑈𝐶𝑝𝑙𝑎𝑠𝑚𝑎,𝑚𝑜𝑡ℎ𝑒𝑟
∗ 100 %
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Infant Risk Assessment

References: Nauwelaerts et al. (2023)
Infant exposure of nevirapine and tenofovir should be interpreted with caution as human milk concentration-time profiles were overpredicted.
Caffeine is administered only to preterm infants.

The RID, % was low (< 10%) for 8 medicines;

The RID,therapeutic for all medicines was well below (<25%) the common dosing regimens
given to infants for therapeutic reasons.

RID % =
𝐷𝑎𝑖𝑙𝑦 𝑖𝑛𝑓𝑎𝑛𝑡 𝑑𝑜𝑠𝑎𝑔𝑒

𝐷𝑎𝑖𝑙𝑦 𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑜𝑠𝑎𝑔𝑒
∗ 100 % 𝑅𝐼𝐷𝑡ℎ𝑒𝑟𝑎𝑝𝑒𝑢𝑡𝑖𝑐 % =

𝐷𝑎𝑖𝑙𝑦 𝑖𝑛𝑓𝑎𝑛𝑡 𝑑𝑜𝑠𝑎𝑔𝑒

𝐷𝑎𝑖𝑙𝑦 therapeutic infant 𝑑𝑜𝑠𝑎𝑔𝑒
∗ 100 %



11

Non-clinical platform for predicting milk and infant exposure 

to maternal medication

Reference: https://doi.org/10.1016/j.biopha.2020.111038
The specific aims are: (i) to compile the state-of-the art of non-clinical tools for human milk medicine transfer; (ii) to develop in vitro models, enabling determination of medicine transport rates at the
human blood/milk barrier; (iii) to develop PBPK models for the bottom-up prediction of in vivo human milk medicine exposure; (iv) to generate in vivo human data for the exposure of medicines in
human milk; (v) to initiate regulatory acceptance for the developed non-clinical platform

https://doi.org/10.1016/j.biopha.2020.111038
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Epithelial cells form a tight barrier between blood and 

human milk

Reference: https://doi.org/10.1016/j.biopha.2020.111038

https://doi.org/10.1016/j.biopha.2020.111038


Bidirectional permeability coefficients were obtained in human 

mammary epithelial cells (hMECs)

𝑃𝑎𝑝𝑝 =
𝑑𝑄

𝑑𝑡

1

𝐴𝐶0

Reference: https://doi.org/10.3390/ijms252111454

Abbreviations: Permeability coefficient (Papp, cm/s); steady-state flux (dQ/dt); Surface area of the filter (A); Initial donor concentration (C0)

▪ hMECs in vitro model covered a 50-fold range of 

permeability values, differentiating between passive 

transcellular (propranolol) and paracellular (atenolol) 

mediated transport.

▪ There is a correlation between the basolateral-to-apical 

apparent permeability (i.e. representing secretion towards 

human milk) in hMECs and the in vivo M/P ratio.
Independent experiments are shown in red (n=6), green (n=6) and blue (n=3).
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https://doi.org/10.3390/ijms252111454


In vitro permeability coefficients can inform lactation 

PBPK models

𝑑𝑁𝑚𝑖𝑙𝑘

𝑑𝑡
= 𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝐶𝐿𝑠𝑒𝑐

𝑑𝑁𝑝𝑙𝑎𝑠𝑚𝑎

𝑑𝑡
= 𝐶𝑚𝑖𝑙𝑘 ∗ 𝑓𝑢𝑚𝑖𝑙𝑘,𝑡𝑜𝑡𝑎𝑙 ∗ 𝐶𝐿𝑟𝑒

𝐶𝐿𝑠𝑒𝑐 = SA ∗ 𝑃𝑎𝑝𝑝,𝐵𝐴

𝐶𝐿𝑟𝑒 = SA ∗ 𝑃𝑎𝑝𝑝,𝐴𝐵

Abbreviations: Permeability coefficient (Papp, cm/s); apical-to-basolateral (AB), basolateral-to-apical (BA) , surface area (SA); change in 

amount of medicine in human milk over time (dNmilk/dt); change in amount of medicine in human plasma over time (dNplasma/dt)
Confidential data
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Integration of in vitro permeability coefficients

improved human milk predictions of nevirapine

Figure on the right panel shown the data with the y-axis on a log scale.

Confidential data



▪ Lactation PBPK models carry the promise for “early” in silico prediction of 

medicine milk concentration time profiles

▪ Ongoing efforts will implement in vitro permeability coefficients across the blood 

– milk barrier  

▪ PBPK-based simulations are expected to support decisions about medication 

use during lactation
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Conclusions and future perspectives



Thank you!
Julia Macente

julia.macente@kuleuven.be
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